Derivation of pure-birth model

Dan Rabosky

June 22, 2017

Consider a lineage that exists (e.g., the opposite of *not existing*) with probability P(t). We say that the lineage does not exist (in its current state, anyway) if it undergoes a speciation event. Allow that the lineage can undergo speciation on some time interval Δt with some probability $\lambda \Delta t$.

It must then be true that, on the same time interval Δt , the lineage will *not undergo speciation* with probability $1 - \lambda \Delta t$.

We can then write down an equation for the *new probability* that the lineage exists in its current state some amount of time Δt later, as

$$P(t + \Delta t) = (1 - \Delta t\lambda)P(t) \tag{1}$$

So, the probability of the lineage in its current state some time Δt later is simply the current probability of existence P(t) multiplied by the probability that nothing happens on the focal interval. We can rearrange this equation to:

$$P(t + \Delta t) = P(t) - \Delta t \lambda P(t)$$
⁽²⁾

and then

$$P(t + \Delta t) - P(t) = -\Delta t \lambda P(t)$$
(3)

Now, we can maybe see where this is going. Remember from calculus that the definition of a derivative is:

$$\frac{dX}{dt} = \lim_{\Delta t \to 0} \frac{X(t + \Delta t) - X(t)}{\Delta t}$$
(4)

We want to make a differential equation for the change in probability as a function of time, dP/dt, and we can do this by dividing both sides by Δt and taking limits as $\Delta t \rightarrow 0$:

$$\frac{P(t+\Delta t) - P(t)}{\Delta t} = \frac{-\Delta t \lambda P(t)}{\Delta t}$$
(5)

$$\lim_{\Delta t \to 0} \frac{P(t + \Delta t) - P(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{-\Delta t \lambda P(t)}{\Delta t}$$
(6)

So this gives us

$$\frac{dP}{dt} = -\lambda P(t) \tag{7}$$

This is a simple differential equation that can be solved to yield an equation for the probability that a lineage *will not speciate* after some time t. Representing P(t) as P, we can make some simple rearrangements:

$$\frac{dP}{P} = -\lambda dt \tag{8}$$

We can solve this by integrating both sides:

$$\int \frac{dP}{P} = \int -\lambda dt \tag{9}$$

$$\ln(P) = -\lambda t + c \tag{10}$$

where *c* is the constant of integration. Exponentiating both sides:

$$P = e^{-\lambda t + c} = e^{-\lambda t} e^c \tag{11}$$

Rewriting with P(t):

$$P(t) = e^{-\lambda t} e^c \tag{12}$$

To deal with the constant of integration, we note that we have the initial condition P(0) = 1, or

$$P(t) = 1 = e^0 e^c (13)$$

or

$$1 = e^c \tag{14}$$

So c = 0, and the probability of a given waiting time t_i , under a pure-birth process, is:

$$P(t_i) = e^{-\lambda t_i} \tag{15}$$